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We study bubble break-up in homogeneous and isotropic turbulence by direct numerical
simulations of the two-phase incompressible Navier–Stokes equations. We create the
turbulence by forcing in physical space and introduce the bubble once a statistically
stationary state is reached. We perform a large ensemble of simulations to investigate the
effect of the Weber number (the ratio of turbulent and surface tension forces) on bubble
break-up dynamics and statistics, including the child bubble size distribution, and discuss
the numerical requirements to obtain results independent of grid size. We characterize
the critical Weber number below which no break-up occurs and the associated Hinze
scale dh. At Weber number close to stable conditions (initial bubble sizes d0 ≈ dh), we
observe binary and tertiary break-ups, leading to bubbles mostly between 0.5dh and dh,
a signature of a production process local in scale. For large Weber numbers (d0 > 3dh),
we observe the creation of a wide range of bubble radii, with numerous child bubbles
between 0.1dh and 0.3dh, an order of magnitude smaller than the parent bubble. The
separation of scales between the parent and child bubble is a signature of a production
process non-local in scale. The formation mechanism of these sub-Hinze scale bubbles
relates to rapid large deformation and successive break-ups: the first break-up in a sequence
leaves highly deformed bubbles which will break again, without recovering a spherical
shape and creating an array of much smaller bubbles. We discuss the application of this
scenario to the production of sub-Hinze bubbles under breaking waves.
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1. Introduction

1.1. Broader context
Chemical, aerosol and gas exchanges through liquid–gas interfaces appear in numerous
industrial and environmental situations. In many cases, the interface deforms and breaks
violently under the action of turbulent flows forming drops and bubbles (Eggers &
Villermaux 2008; Balachandar & Eaton 2010). The newly formed satellite interfaces
increase drastically the exchange surface, enhancing the transfer between the two phases.
Practical examples include oil spill mitigations (Gopalan & Katz 2010; Afshar-Mohajer
et al. 2018), oil and gas transportation from remote wells (Galinat et al. 2005; Ayati et al.
2017), air entrained by bow waves in naval applications (Baba 1969; Shakeri, Tavakolinejad
& Duncan 2009), together with ocean–atmosphere interactions with breaking waves
inducing bubble-mediated gas exchange (Deane & Stokes 2002; Deike, Lenain & Melville
2017; Deike & Melville 2018) and ejecting sea spray aerosols (Veron 2015).

The description of bubbles generated by breaking waves is of first interest in the
understanding of the interactions between atmosphere and oceans (Wallace & Wirick
1992; Melville 1996). Bubbles have a dramatic effect on gas transfer, accounting for 30 %
to 40 % of the total CO2 gas transfer between the ocean and the atmosphere (Keeling
1993; Deike & Melville 2018; Reichl & Deike 2020) and acting as the main pathways
for low solubility gases (Liang et al. 2011). The smallest bubbles tend to dissolve in the
water whereas larger ones rise to the surface and collapse. The bursting of bubbles at
the surface produces sea spray aerosol, that can be transported in the atmosphere and
evaporate, playing a role in the thermodynamics of the atmosphere (Veron 2015). As
a consequence, improving the accuracy of Earth system models requires an improved
description of turbulent air–water flows.

The break-up of bubbles can be controlled by interfacial instabilities or triggered by
turbulent fluctuations at the particle scale, with fragmentation in turbulence being a major
research challenge in multi-phase flows (Elghobashi 2019; Villermaux 2020). Earlier
studies have concentrated on identifying the stable bubble length scale, from a balance
between turbulent pressure fluctuations and interfacial forces (Kolmogorov 1949; Hinze
1955; Risso & Fabre 1998; Martinez-Bazan, Montanes & Lasheras 1999a,b). The turbulent
kinetic energy at the particle scale, assuming it is within the inertial range, only depends
on the turbulent dissipation rate (Kolmogorov 1941), and the comparison between the
turbulence and surface tension forces at the bubble scale defines the Weber number. Below
a critical Weber number, Wec, surface tension forces will prevent bubble break-up while at
larger Weber number, bubble break-up can occur (Kolmogorov 1949; Hinze 1955; Risso &
Fabre 1998; Martinez-Bazan et al. 1999a,b). The Weber number can also be interpreted in
terms of the ratio between the capillary and inertial time scales. The critical Weber number
defines the Hinze size, dh, Wec ≡ We(dh) which can also be derived by dimensional
analysis, balancing the turbulence and surface tension forces (Kolmogorov 1949; Hinze
1955). Experimental studies of bubble dynamics in turbulence have measured the critical
Weber number and found values of order unity. Two mechanisms driving the deformation
and break-up have been discussed (Martinez-Bazan et al. 1999a; Andersson & Andersson
2006; Ravelet, Colin & Risso 2011; Vejražka, Zedníková & Stanovskỳ 2018), namely either
direct strong action of an eddy at the scale of the bubble leading to large deformation and
break-up, or a resonance mechanism between deformation caused by weaker eddies and
oscillation of the bubble (Risso & Fabre 1998). Experimental studies have identified an
oscillatory response of bubbles in turbulence associated with the second eigenmode in
the spherical harmonic decomposition (Risso & Fabre 1998; Ravelet et al. 2011; Perrard
et al. 2021). This leads to a modification of the Kolmogorov–Hinze theory (Hinze 1955),
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Sub-Hinze scale bubble production in turbulence

i.e. a critical Weber number is identified and the break-up time is related to the turbulent
time, or eddy turnover time, at the size of the parent bubble, and decreases with increasing
Weber number, with possible finite-Reynolds-number corrections (Martinez-Bazan et al.
1999a,b; Revuelta, Rodríguez-Rodríguez & Martínez-Bazán 2006; Martinez-Bazan et al.
2010).

The break-up of bubbles close to the critical conditions, i.e. close to the critical Weber
number, has received considerable attention. The observed critical Weber number varies
by almost an order of magnitude (Risso & Fabre 1998; Martinez-Bazan et al. 1999a; Risso
2000; Andersson & Andersson 2006; Galinat et al. 2007; Liao & Lucas 2009; Ravelet
et al. 2011; Vejražka et al. 2018), which could be attributed to the large differences in
experimental conditions (e.g. turbulence created by falling jets, at the core of a turbulent
jet, under breaking waves), together with variability in estimating the turbulent dissipation
rate (single point measurements, spatial average over potentially non-homogenous regions,
local anisotropy in the flow), while the level of homogeneity and isotropy of the turbulent
flow can also vary by large degrees. This complicates direct comparison and makes
extrapolation to inhomogeneous turbulence encountered in nature almost impossible.
Mostly binary break-up models have been considered in population balance approaches
(Martinez-Bazan et al. 2010; Qi, Masuk & Ni 2020). The break-up of bubbles far from
the critical size exhibits very different behaviour, with the formation of multiple satellite
bubbles below the critical Hinze scale, and remains poorly characterized.

Separately, the size distribution of bubbles under a breaking wave has been studied
experimentally (Loewen & Melville 1994; Deane & Stokes 2002; Rojas & Loewen 2007;
Blenkinsopp & Chaplin 2010) and more recently numerically (Deike, Melville & Popinet
2016). Experimental and numerical results exhibit a power law scaling for the bubble
size distribution above the Hinze scale, d > dh, following N(d) ∝ d−10/3, which can be
rationalized by a turbulent cascade model developed by Garrett, Li & Farmer (2000).
This model is based on the idea of bubble fragmentation cascade by turbulence, with a
break-up time given by the eddy turnover time at the size of the parent bubble and local
production sizes. However, for bubbles below the critical Hinze scale, d < dh, the statistics
remain poorly characterized, with experimental data exhibiting large variations (see figure
1 of Deike et al. (2016) showing variations in bubble size distributions from experimental
results by Loewen & Melville (1994), Deane & Stokes (2002), Rojas & Loewen (2007)
and Blenkinsopp & Chaplin (2010)) and the formation mechanisms still to be determined.
Such sub-Hinze scale bubbles correspond to scales from the micron to the millimetre scale,
which contribute the most to gas exchange (Deike & Melville 2018), especially for low
solubility gases (Keeling 1993), and aerosol generation through bubble bursting (Veron
2015).

Direct modelling of bubble deformation and break-up in a turbulent flow is a challenging
task, and an extensive review on the various numerical approaches for droplet and bubble
of various sizes in turbulence has recently been presented by Elghobashi (2019). Numerical
methods to study the deformation of bubbles or droplets larger than the Kolmogorov
length scale in a turbulent flow are especially challenging as they need to resolve the
shape and motion of the interfaces between the two phases. Three families of methods
have been employed (Elghobashi 2019). (I) Front-tracking methods, where the interface is
marked by points that are advected by the flow, as in the front-tracking method of Unverdi
& Tryggvason (1992) and Tryggvason et al. (2001) which have been used to study the
deformation of large bubbles in turbulence (Lu & Tryggvason 2008, 2013). (II) Immersed
boundary methods were recently used by Spandan, Verzicco & Lohse (2018) to perform a
direct numerical simulation (DNS) study on the effects of dispersed deformable bubbles
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larger than the Kolmogorov scale on drag reduction in a turbulent Taylor–Couette flow.
(III) Tracking scalar function methods, which come with different interface reconstruction
methods, (i) the volume of fluid method where the relevant function is the volume fraction
of the local phase on either side of the interface (Scardovelli & Zaleski 1999), (ii) the
level-set method, where the function is the signed distance function representing the
distance from the interface (e.g. Desjardins, Moureau & Pitsch 2008), (iii) the lattice
Boltzmann method, which uses a probability density function of finding a fluid particle of
fluid phase within the discretized lattice (Shan & Chen 1993; Chen & Doolen 1998) and
(iv) the phase field method, where the function is the scalar phase field, which represents
one of the physical properties (e.g. molar concentration) of a binary fluid mixture. The
function is mostly uniform in the bulk phases and varies smoothly over a diffuse interfacial
layer of finite thickness, with its transport governed by the Cahn–Hilliard equation (Cahn
& Hilliard 1959).

The break-up of an interface in turbulence has been achieved using scalar functions
methods. Simulations of single-bubble deformation and break-up in isotropic turbulence
using the lattice Boltzmann method were performed by Qian et al. (2006). The results
were compared to Risso & Fabre (1998) in terms of deformation and confirmed the
identification of a critical Weber number. More recently, Mukherjee et al. (2019) used the
lattice Boltzmann method to study droplet–turbulence interactions and quasi-equilibrium
dynamics in turbulent emulsions. Rising deformable bubbles in turbulence have been
studied by Loisy & Naso (2017) with a modified level-set method. Soligo, Roccon &
Soldati (2019) used the phase field approach to study the breakage, coalescence and size
distribution of surfactant-laden droplets in a turbulent flow. These recent studies observed
a droplet size distribution following a d−10/3 scaling for particles larger than the critical
Hinze scale. Such distributions had previously been reported to describe the bubble size
distribution under a breaking waves, both experimentally (Deane & Stokes 2002) and
through DNS using the volume of fluid (VOF) approach (Deike et al. 2016; Wang, Yang
& Stern 2016). It has also been successfully used to study complex two-phase turbulence
flow under breaking waves (Deike et al. 2016; Wang et al. 2016; Chan et al. 2021), and
allows us to reach high density and viscosity ratios. Additionally, the VOF algorithm has
also been used to study a large number of droplets being deformed and interacting with
the turbulent flow (Dodd & Ferrante 2016).

Here, we investigate the break-up of bubbles in a homogeneous and isotropic turbulent
flow by direct numerical simulations of the two-phase, three-dimensional, incompressible
Navier–Stokes equations with surface tension, and a geometric VOF method to reconstruct
the interface, making use of the recent progresses in numerical methods implemented in
the Basilisk package (van Hooft et al. 2018; Popinet 2018). We use a spatial adaptive
octree grid to investigate bubble break-up resolving for a wide range of scales, as recently
demonstrated for two-phase turbulent flow in the case of breaking waves (Deike et al. 2016;
Mostert & Deike 2020). This work focuses on bubble break-up and explores the formation
of sub-Hinze scale bubbles while a companion paper describes the deformation dynamics
prior to breaking (Perrard et al. 2021).

1.2. Setting the scene
We consider a bubble of diameter d0, density ρa and viscosity μa in a turbulent liquid
of density ρw and viscosity μw, and γ is the surface tension coefficient between air and
water. We work with the air–water density ratio ρw/ρa = 850 and a high viscosity ratio of
μw/μa = 25.
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Sub-Hinze scale bubble production in turbulence

The break-up dynamics of a bubble in a turbulent flow depends primarily on the ability
of the surrounding fluid to deform the bubble against surface tension forces. This defines
the Weber number, comparing inertial forces generated by the turbulent carrier flow and
the capillary cohesive forces. Considering the velocity fluctuation at the bubble diameter
scale d0, formalized by the longitudinal velocity increment δu(d0) = uL(r, t) − uL(r +
d0, t), the turbulent Weber number is defined as We = ρw〈δu(d0)

2〉d0/γ (Hinze 1955;
Risso & Fabre 1998) with ρw the density of water, γ the air–water surface tension and 〈〉
the average over the flow configurations. In a homogeneous and isotropic turbulent flow,
the velocity fluctuations at the bubble scale δu(d0)

2 can be related to the mean dissipation
rate of energy ε using the Kolmogorov (1941) theory 〈δu(d0)

2〉 = C(εd0)
2/3 for d0 in the

inertial range. Experimental studies have observed C ∈ [2, 2.2] depending on Reynolds
number (Pope 2000; Cowen & Variano 2008). We chose C = 2 for consistency with Risso
& Fabre (1998), and the Weber number writes,

We = 2ρwε2/3d5/3
0

γ
. (1.1)

The critical Weber number, Wec below which the bubble might deform but does not
break, defines the Hinze scale dh (Hinze 1955; Risso & Fabre 1998), so that Wec ≡ We(dh),
and it follows,

dh =
(

Wec

2

)3/5 (
γ

ρw

)3/5

ε−2/5. (1.2)

This assumes that the bubble is within the inertial range. In essence, the turbulent
flow presents large fluctuations, leading to a broad range of break-up times for the same
turbulent conditions, especially close to stable conditions, which make estimations of the
critical Weber number challenging. The critical Hinze scale (or critical Weber number)
is usually defined in a statistical sense and for a given time of observation, typically
corresponding to the conditions where half of the bubbles will break while the other
half will not break. This definition thus depends on an observation time constrained
by experimental procedures (or numerical limitations), which is one of the reasons for
the variations in the literature. The experimentally reported values of the critical Weber
numbers are typically between 0.7 and 5 (Risso & Fabre 1998; Martinez-Bazan et al.
1999a; Deane & Stokes 2002; Andersson & Andersson 2006; Liao & Lucas 2009;
Vejražka et al. 2018) corresponding to variations in the pre-factor (Wec/2)3/5 from
approximately 0.5 to 2. The wide range of critical Weber numbers observed can also be
related to the variability in the experimental configurations, which introduces other flow
parameters, such as large scale shear or spatial variations of the dissipative rate ε. As will
be discussed later in the paper, we obtain and consider a value of Wec = 3 in our numerical
configuration, which we will use throughout the paper, that falls into the experimentally
reported values.

Building on earlier work (Hinze 1955; Risso & Fabre 1998; Martinez-Bazan et al.
1999a), Perrard et al. (2021) and Ruth et al. (2019) discuss the relevant time scale for
bubble deformation and break-up. In particular, the eddy turnover time at the scale of the
bubble, or turbulent time scale at the size of the bubble d0 is given by

tc = d2/3
0 ε−1/3. (1.3)

As discussed by Perrard et al. (2021) and in agreement with experimental observation, this
provides a reasonable estimate of the break-up time at high Weber number (We � Wec)
while the distribution of break-up times close to stable conditions is very broad.
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The second controlling parameter is the intensity of the turbulent flow, characterized
by the Reynolds number Re, the ratio between inertial forces and viscous forces. The
turbulent flow fluctuations are better characterized by the Taylor Reynolds number, which
is based on the correlation length of velocity gradients, called the Taylor micro-scale.
In homogeneous and isotropic turbulence, the Taylor micro-scale reads (Pope 2000)
λ = √

(15μw)/(ρwε)urms, with urms the root mean square of the velocity. The Taylor
Reynolds number is defined as (Pope 2000),

Reλ = ρwurmsλ

μw
. (1.4)

The use of these definitions from single-phase homogeneous and isotropic turbulence is
justified by the low volume fraction of air considered.

The influence of the Reynolds number on the break-up process, break-up time
and child size distribution has been less studied than the effect of the Weber
number, which is the main controller of the break-up processes (Hinze 1955; Risso
& Fabre 1998; Martinez-Bazan et al. 2010). Note that gravity, g, can affect the
break-up for large rising bubbles (Magnaudet & Eames 2000; Ravelet et al. 2011),
and is quantified by the Bond number Bo = (ρwgd2

0)/γ , but is not considered in the
present work.

1.3. Outline of the present work: bubble break-up in turbulence
We study bubble break-up in continuously forced conditions, within a stationary
homogenous and isotropic turbulent flow. The continuously forced conditions mimic
the natural or experimental conditions where multiple break-up events may happen
successively, leading to a final distribution of child bubbles. We investigate the role of
the Weber number on the break-up dynamics and child size distribution. The Weber
number is increased from a low value with deformation but no-break-up (We 
 Wec),
to break-up close to critical Weber number (We ≥ Wec) and up to large Weber number
with dramatic break-up (We � Wec). The principle of the simulations is the following.
We insert a bubble into a turbulent flow and characterize its deformation, break-up times
and child formation. We present both a dynamical discussion of the break-up processes
through analysis of single simulations at high resolution and a statistical analysis of
the resulting size distribution obtained from averaging an ensemble of simulations and
events.

The paper is organized as follow. First, in § 2, we present the computational methods,
and discuss the creation of an isotropic homogeneous turbulent flow through a precursor
simulation with no bubble and finally the insertion of the bubble. We verify convergence
of the turbulent flow and the bubble dynamics in decaying turbulence for an increasing
maximum level of resolution. In § 3, we introduce the ensemble of continuously forced
turbulence simulations done at different initial Weber numbers and interface resolutions.
We present the phenomenology on increasing the Weber number, from break-up close to
stable conditions, which only produces a few bubbles, to high Weber number conditions
where multiple break-ups are observed, leading to the formation of a wide range
of bubbles, in particular numerous sub-Hinze scale bubbles. In § 4, we discuss the
statistics of child bubbles during the multiple break-ups and the final size distribution.
We discuss the local and non-local production mechanisms in scale and conclude
in § 5.
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2. The numerical configuration: solver, creation and characterization of the
turbulent flow and bubble injection

2.1. Numerical methods: the Basilisk flow solver
We perform direct numerical simulations of the three-dimensional, incompressible
Navier–Stokes equations, either with a single phase (the turbulence precursor simulation)
or with two phases (air bubble and turbulent water) with surface tension. We use the
free software Basilisk (http://basilisk.fr/), the successor of Gerris, which is based on a
spatial adaptive quad-octree grid allowing us to save computational time while resolving
the different length scales of the problem (Popinet 2003, 2009). It is based on a momentum
conserving scheme and a sharp VOF method to reconstruct the interfaces (Popinet 2018)
between the high density liquid (water) and the low density gas (air). These methods have
been extensively described in recent publications (Popinet 2015, 2018; Fuster & Popinet
2018; van Hooft et al. 2018), and their accuracy has been validated, with multiple examples
and test cases available on the Basilisk website, with studies exploring complex multiphase
flow, including splashing (Thoraval et al. 2012; Marcotte et al. 2019), bubble bursting
(Deike et al. 2018; Lai, Eggers & Deike 2018; Berny et al. 2020), instability at an interface
(Bagué et al. 2010), and wave breaking (Deike, Popinet & Melville 2015; Deike et al. 2016,
2017; Mostert & Deike 2020; Mostert, Popinet & Deike 2021). Note that compressible
effects in the bubble dynamics are not considered here.

The multi-fluid interface is traced by a function T (x, t), defined as the volume fraction
of a given fluid in each cell of the computational mesh. The density and viscosity can
thus be written as ρ(T ) = T ρw + (1 − T )ρa, μ(T ) = T μw + (1 − T )μa, with ρw, ρa
and μw, μa the density and viscosity of the two fluids (water and air), respectively. The
incompressible, variable density, Navier–Stokes equations with surface tension can be
written as ⎧⎪⎨

⎪⎩
ρ(∂tu + (u · ∇)u) = −∇p + ∇ · (2μD) + γ κδsn

∂tρ + ∇ · (ρu) = 0

∇ · u = 0

⎫⎪⎬
⎪⎭ , (2.1)

with u = (u, v, w) the fluid velocity, ρ ≡ ρ(x, t) the fluid density, μ ≡ μ(x, t) the
dynamic viscosity and D the deformation tensor defined as Dij ≡ (∂iuj + ∂jui)/2. The
Dirac delta, δs, expresses the fact that the surface tension term is concentrated on the
interface, where γ is the surface tension coefficient, κ and n the mean curvature and
normal to the interface.

As discussed in Deike et al. (2016), the interface between volumes of water (tracer
T = 1) and air (tracer T = 0) is reconstructed by a discrete geometric VOF method
(Scardovelli & Zaleski 1999). In the geometric VOF formulation, the volume fraction
field is the exact integral of the volume fraction in each discretization element. It is not
‘smeared’ or ‘diffused’, i.e. the volume fraction is one or zero in cells which do not
contain an interface and between zero and one in cells which contain an interface. The
interface can then be reconstructed unambiguously in each cell with second-order accuracy
(using piecewise-linear elements). The volume of individual bubbles and droplets can
then be determined without ambiguity by considering connected regions, separated by
interfacial cells. This is done in practice by using an implementation of the classical
‘painter’s algorithm’ which is typically used in bitmap graphics editors to ‘fill’ connected
regions of an image with a given colour. This method is exact at the order of resolution
of the Navier–Stokes equations and the associated VOF method; each closed surface
being detected and counted without ambiguity. The diameter of bubbles presented in this
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work are computed as an effective diameter from the corresponding volume. Volume is
conserved in these simulations typically up to 0.1 %.

2.2. Creation of the turbulence by forcing in the physical space
The first step of our study is to create a homogeneous isotropic statistically stationary
turbulent flow in a three-dimensional periodic box. Since we are resolving the
Navier–Stokes equation on the physical space we cannot follow the usual spectral approach
and inject energy at low wavenumber in Fourier space (Rosales & Meneveau 2005).
However, it has been shown by Rosales & Meneveau (2005) that by forcing the medium
with a force proportional to the velocity in every point of space we can create a well
characterized homogeneous and isotropic turbulent flow with properties similar to those
obtained with a spectral code. Such an approach has been followed by various numerical
studies: Naso & Prosperetti (2010) used a linear forcing to study the interaction between a
fixed solid sphere and turbulence, Duret et al. (2012) investigated evaporation and mixing
processes in turbulent two-phase flows while Toutant et al. (2008) and Loisy & Naso
(2017) used this method to study a rising bubble in a turbulent flow. This idea has been
previously implemented and is provided as an example on the Basilisk website (http://
basilisk.fr/src/examples/isotropic.c). We consider a periodic box of volume L3. The forced
turbulence conditions are described by

ρ(∂tu + (u · ∇)u) = −∇p + ∇ · (2μD) + γ κδsn + T f , (2.2)

where the forcing f is given by

f (x, t) = Au(x, t). (2.3)

The forcing coefficient is set to A = 0.1. The grid resolution can be compared to a fixed
grid through the number of levels of refinement, Le. The equivalent maximum resolution
for a given level of refinement Le is 2Le per direction, leading to an equivalent of (2Le)3

grid points in three dimensions, and the smallest grid size is Δ = L/2Le. Refinement of
the octree-based adaptive mesh in Basilisk is controlled by two parameters: the maximum
refinement level and the criterion used to refine. The refinement criterion can be seen as
the error tolerated on the convergence of the solver when refining/de-refining, and is based
here on the velocity gradient. Note that using a more restrictive criterion would lead to a
numerical grid with more points (Popinet 2009).

2.3. Turbulence stationary state and statistics
The resulting flow follows a transient before reaching the turbulent stationary state. The
transient can be observed by considering the time evolution of various metrics of the
turbulent flow such as the kinetic energy density and the turbulent dissipation rate, as
well as the number of grid points within the adaptive algorithm. Figure 1 shows the time
evolution of the kinetic energy K = (1/V)

∫∫∫ 1
2ρwu(x, t)2 dV , the turbulent dissipation

rate ε = (νw/2)
∫

V(∂iuj + ∂jui)
2 dV and the associated Reynolds number at the Taylor

micro-scale Reλ. Injection and dissipation of energy eventually balances on average and
we obtain a statistically stationary, homogeneous and isotropic turbulence. The statistically
stationary state is reached after approximately 10 eddy turnover times τ = u2

rms/ε, where ε

is the averaged dissipation rate and urms the averaged root mean square velocity, both in the
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Figure 1. Turbulence statistics as a function of time, for three maximum levels of refinement, Le = 6, 7 and
8, showing kinetic energy (a), dissipation rate (b) and turbulent Reynolds number Reλ (c). A stationary state
is reached at t/τ ≈ 10 and the results are similar for all levels of refinement. We also show the number of grid
points (d) as a function of time for three maximum levels of resolution. The dashed lines represent the number
of points if a regular grid at the corresponding level were used ((2Le)3). At level 6, the maximum number of
points is reached. At level 8, the maximum number of points is never reached, showing that the adaptivity
criteria are effective in reducing the grid size.

steady state. We observe that all quantities are statistically the same for a maximum level
of 7 or 8, which indicates a sufficiently small grid size to resolve the main mechanisms
at play in the turbulent flow. The associated Taylor Reynolds number Reλ ≈ 38, is typical
of two-phase simulations of turbulent flow (Loisy & Naso 2017; Elghobashi 2019). Note
that, while the flow is statistically stationary and equivalent for the various resolutions, the
chaotic nature of the flow makes each time series different.

Figure 1 also shows the number of grid points as a function of time for the different
levels of refinement. We observe that the number of points saturates between levels 7 and
8, which shows that we are satisfying the refinement criterion. On the other hand, at level
6, the maximum possible number of points (26)3 is reached and shows that our criterion
of refinement is effective: the saturation observed before is not due to a too weak criterion
which does not allow the code to refine more even if the maximum level is not reached.
Moreover, the fact that the number of points after the transition fluctuates around a value
far from the maximum also shows that the medium is well described with a maximum
level of 8. Thus, our simulations are converged at level 7. Since the grid is adaptive, setting
a maximum level to a value superior to the real limit does not increase the number of
points in the simulation and the computational time. Note that the effective resolution
corresponds to resolving the Kolmogorov length scale η with 0.5, 1 and 2 grid points for
levels 6, 7 and 8 respectively.

Figure 2 shows some statistical properties of the turbulent flow once the stationary state
is reached. The velocity from the adaptive octree is interpolated on a regular grid using
linear interpolation. We characterize the fluctuations using the second-order structure
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Figure 2. (a) Second-order structure function DNN (blue) and 4/3DLL (black) in the longitudinal and
transverse directions respectively, compensated by the homogeneous and isotropic turbulence scaling (rε)−2/3

as a function of the dimensionless radius r/η, where η is the Kolmogorov length scale (Pope 2000).
(Kolmogorov 1941) theory is superimposed in the red dashed line. The scaling DLL(εr)−2/3 ∝ r4/3, which
holds for small values of r/η, is superimposed in the solid red line. (b) Test of the flow isotropy. DNN |iso
evaluated from (2.6) is shown as a function of DNN . The dashed line corresponds to the purely isotropic flow
scaling.

functions in the longitudinal DLL(r) and the transverse DNN(r) directions, defined as

DLL(r) = 1
3

∑
i

〈(ui(x, t) − ui(x + rx̂i, t)
)2〉 (2.4)

DNN(r) = 1
6

∑
i /= j

〈(ui(x, t) − ui(x + rx̂j, t)
)2〉, (2.5)

with x̂i the unit vector along the i direction. Figure 2(a) shows the structure functions DLL
and DNN compensated by their scaling for a homogeneous and isotropic flow (dε)2/3.
For DLL, we observe a plateau value close to C = 2 (Pope 2000). For smaller length
scales, we recover DLL ∝ r2, which corresponds to a scaling r4/3 for the compensated
structure function. The compensated longitudinal structure function 4/3DLL(d)(dε)2/3 is
also represented and follows the same trend, although the relation DLL = 3/4DNN is not
well verified, as expected for rather small values of Reλ. The inertial range is obviously
quite limited for Reλ = 38, but the turbulent flow at the scale of the bubble is reasonable
and the bubble radius lies within the inertial range. To check the flow isotropy, we perform
an additional test which will hold even for limited values of Reλ. In a homogeneous and
isotropic flow, DNN |iso can be expressed as a function of DLL as (Pope 2000)

DNN |iso = DLL + r
2

∂

∂r
(DLL(r)) . (2.6)

The value of DNN |iso computed from (2.6) is shown in figure 2(b) as a function of DLL.
The scaling of isotropic flow holds perfectly.

Once the statistically stationary state has been reached, we extract the velocity field at
different times and refer to them in the following as precursors. They are used as initial
conditions for the simulations in which we inject a bubble in the centre region.
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2.4. Inserting the bubble and interface refinement
We have presented and characterized the homogeneous and isotropic turbulent flow and
aim to study the behaviour of a bubble inside such a flow and to describe the following
break-up dynamics and the role of the Weber number.

The bubble injection in one of the precursors is as follows: at the first time step of the
simulation the tracer function inside the volume defined by the bubble (of diameter d0
located at the centre of the box) is changed to T = 0 corresponding to air, and the velocity
field inside the bubble is initially put to zero u(T = 0) = 0, as the bubble should not
break because of its interior flow. The initial bubble size is d0 = 0.13L, which is close to
the Taylor length scale λ, so that the initial bubble is within the inertial range.

Note that we have verified that the break-up times are independent of the initialization,
and of the fact that the velocity is put to 0 inside the bubble. The solver relaxes within a
few time steps after the initialization and the velocity and pressure become independent
of the details of the initialization well before deformations start to be important. Note also
that each precursor time is taken every one to two eddy turnover times in order to ensure
statistical independence between the various initial conditions experienced by the bubbles.

We verified the grid convergence of the turbulent precursor flow above, so we keep the
same refinement criterion on the velocity, and add a second criterion of adaptation on
the gas–liquid interface, based on the value of the phase tracer T . We consider a higher
resolution on the interface as high curvature and associated surface tension forces need
to be correctly captured during bubble deformation and break-up. Therefore, we consider
levels of refinement Le = 9 and Le = 10 to test the robustness and accuracy of our results
and their independence of grid size. The smallest grid size on the interface is therefore
Δ = L/2Le, with Le = 9 and Le = 10. Note that sensitivity tests were performed on the
refinement criterion and the choice was made to obtain efficient maximum refinement on
the bubble interface without over-resolving the interface, as a trade-off between accuracy
and computational cost. The grid refinement then goes from Le to the typical mesh size
in the bulk (which is 7, as shown in figure 1) on moving away from the interface. As
discussed in detail below, very good agreement is observed for the break-ups at early times
between these two resolutions, for both the decaying and forced turbulence simulations,
when considering bubbles with diameter resolution larger than 8Δ. Please note that the
term diameter has to be understood as the equivalent diameter of a spherical bubble having
the same volume as bubbles are generally non-spherical.

The bubble diameter is located in the inertial range. For Reλ = 38 we have d0/η =
17.6, d0/λ = 1.49 and d0/L = 0.13 where λ is the Taylor microscale λ =

√
15νu′2/ε for

homogeneous and isotropic turbulence and L is the box size.

2.5. Decaying turbulent flow: grid convergence test
We start by considering the evolution of the bubble in a freely decaying turbulent flow.
When we insert the bubble into the turbulent flow, we also stop the forcing, setting A = 0.
These simulations are simpler than the forced cases, and they are used as grid convergence
tests. The Weber number is defined by its initial value using the precursor stationary
state turbulence dissipation rate. As the turbulence is freely decaying, the effective Weber
number, that is to say the instantaneous We, will decrease over time. Note that for each
precursor we vary the Weber number by changing the surface tension. In that way, the
turbulence flow field for a given initial condition is the same for all Weber number cases.

Figure 3 shows an example for Reλ = 38 and We = 15 for levels of refinement Le = 9
and Le = 10 for a particular precursor time. Although the turbulence begins to decay from
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(a)
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d/d0
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0.4

0.2

0

Figure 3. Snapshots of a bubble inserted in a decaying turbulence environment with initial Reynolds number
Reλ = 38 and We = 15. These values are based on the initial conditions. The same simulation is performed
with maximum refinement on the interface of Le = 9 (a) and Le = 10 (b). The bubble is strongly deformed
at the beginning and breaks quickly, leading initially to a large size child that is also roughly spherical and
another child that is highly deformed. The highly deformed bubble then breaks into smaller children later in
the sequence. Colour on the interface indicates level of refinement with red colours corresponding to higher
levels. Maximum refinement is obtained for both Le = 9 and Le = 10 simulations. The dynamics is very similar
for the two resolutions considered here. (c) The corresponding diameter trees with Le = 9 (blue) and Le = 10
(red). The diameter is defined from the volume by considering an equivalent spherical bubble. Bubble diameters
are divided by the initial bubble diameter d0, and time by the eddy turnover time at the size of the initial bubble
tc. Bubble break-up occurs around t/tc ≈ 1 and leads to two bubbles, with excellent quantitative agreement
between the two resolutions. A second break-up occurs later at t/tc ≈ 1.6 with qualitative agreement. The
dashed lines indicate the 8 points per diameter resolution 8Δ above which bubble sizes appear well resolved,
while the dotted lines indicate 4Δ. The grid resolutions for Le = 9 and Le = 10 are Δ = L/29 and Δ = L/210

respectively.

the moment of the bubble’s insertion, the bubble nonetheless deforms and quickly breaks
into several child bubbles. After t/tc ≈ 2, the turbulence has completely relaxed and no
further break-up is observed. The bubble is strongly deformed at the beginning and breaks
quickly, leading initially to a large size child that is also roughly spherical and another child
that is highly deformed. The highly deformed bubble then breaks into smaller children later
in the sequence. Colour on the interface indicates level of refinement with warmer colours
corresponding to higher levels.

For both Le = 9 and Le = 10, the first break-up is observed for t/tc ≈ 1 and leads to two
large bubbles and some small fragments. We comment that the fragments are resolved with
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only a few grid points and are to be taken with caution. In particular, while the bubbles
with equivalent diameter above 8Δ have similar sizes for both resolutions, the smaller
fragment appears grid dependent. The break-up times are very close for both resolutions.
We analyse trees representing the diameter of bubbles as a function of time, as shown
in figure 3. The number and sizes of bubbles above 8Δ are very similar at the end of
the simulations, which gives good confidence in our approach. Both simulations present
a similar break-up time, together with the final number of child bubbles and their sizes
(when considering bubbles with d > 8Δ).

Tests with various precursor times for various Weber numbers lead to similar
conclusions: the first break-up is very well converged, happening at the same time within
10 %, and creating the same number of children, with sizes comparable within 10 %.
Subsequent break-ups present more differences but remain reasonable, in particular with
very similar numbers of child bubbles. These statements only concern bubbles resolved
with at least 8 grid points per diameter. This analysis gives us confidence in the accuracy
of the simulations, while keeping in mind that the size of the child bubbles should
be considered statistically, as small differences appear due to numerical resolutions,
especially concerning later break-ups and smaller bubbles.

Simulations with lower Weber numbers present very few break-ups as the turbulence
decays very quickly, which is one of the reasons we move to continuously forced
simulations. The decaying cases present the advantage of working with freely decaying
turbulence, however, this also means that the instantaneous Weber number strongly decays
with time and that we can only capture break-ups occurring in the first instants of the
dynamics, typically within one eddy turnover time, as after that the turbulence is too weak
to deform the bubble in any significant way.

3. Phenomenology of bubble break-up in a forced turbulent flow

3.1. Description of the ensemble of simulations
We now consider turbulent break-up of bubbles in continuously forced conditions. The
forcing is the same as for the precursor but does not apply to the bubble air phase. The
refinement criteria are kept the same as in the decaying cases. We verify the independence
of the results with respect to the resolution on the interface by comparing maximum
refinements of Le = 9, Le = 10 and Le = 11 on the interface. From the above discussion
on grid convergence for a sample of decaying cases, we can postulate that the statistical
quantities of bubble break-up are properly resolved, and independent of grid size. Such
quantities of interest are the typical break-up time, the number of child bubbles and the
distribution of bubble sizes. We will focus on these quantities in the following.

Taking different instants of statistically the same turbulent flow as initial conditions
with the same parameters for the bubble leads to variations in the number and size of
the child bubbles, because of differences in velocity and pressure fluctuations. We follow
a statistical approach and work with forced conditions, i.e. the turbulence is maintained
once the bubble is injected. This also allows study of the break-up characteristics of
bubbles close to the critical Weber number, as it allows for break-up to potentially occur
after multiple eddy turnover times. For each set of parameters we run an ensemble
of simulations corresponding to different realizations of the same turbulent flow. The
underlying hypothesis is that, while two specific realizations might exhibit differences,
their statistical properties will be the same and the analysis of the ensemble average
quantities will shed light on the bubble break-up properties. The goal is to obtain for each
simulation a stationary state in terms of the bubble sizes, i.e. all the bubbles that can break
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(a) t/tc ≈ 1 (b) t/tc ≈ 2.5 (c) t/tc ≈ 6

Figure 4. Non-breaking bubble in turbulence: bubble with size initially close to the Hinze scale, d ≈ dh,
We ≈ Wec; here We = 3 (Reλ = 38), and the interface resolution Le = 10. Snapshots of the bubble during
the simulation, with interface in white and each background plane showing one component of the velocity, at
t/tc ≈ 1, t/tc ≈ 2.5 and t/tc ≈ 6. The bubble deforms due to turbulence and is advected in the flow but does
not break for the duration of the run.

have broken, and no more changes are observed if the simulation continues. Note that we
are in a dilute regime, with the air volume fraction O(10−3), so that coalescence events,
while possible, remain negligible.

We run simulations for a relatively long period of time, from 5tc to 20tc depending
on the Weber number, to account for the broad distribution of break-up times close to
stable conditions. The list of simulations is given in table 1, with ensembles for increasing
Weber number, and increasing numerical resolution. The nominal Weber number uses the
averaged turbulence dissipation rate from the precursor simulations. The corresponding
8Δ resolution is indicated in each case. From the discussion on decaying cases, bubbles
above 8Δ can be considered relatively well resolved, while statistical results below
this threshold will be discussed but have to be considered with caution. This study
aims at providing a statistical description at various Weber numbers and sheds light on
the production of sub-Hinze scale bubbles at high Weber number. The computations
were performed on various high performance computing machines (XSEDE Stampede2,
NCAR-Cheyenne, Princeton Tiger2). The total cost of the computational campaign, tests
and development included is estimated at 2 million CPU hours.

We start with low Weber number We = 1.5 where no break-up is observed in all of the
members of the ensemble. The bubble deforms in the turbulent flow but never breaks
during the simulated time of 20tc. Detailed deformation dynamics is discussed in a
companion paper (Perrard et al. 2021), the bubble being deformed and advected due to
the action of the turbulent flow without breaking, over several eddy turnover times. An
example of such simulation is shown in figure 4. At Weber number We = 3, we observe
break-up for approximately 50 % of the cases when considering a total running time of
20tc, with break-up times varying over the full range of times. It is clear that, given the
broad lifetime statistics of a bubble in these conditions close to stability, the percentage of
cases that do not break might change if we run the simulations for longer times. Increasing
the Weber number to We = 6, and then above, we observe systematic break-up within
20tc. As a consequence, we consider 20tc as a representative, long enough, time and define
We = 3 ≡ Wec the critical Weber number in this study. This value is also likely to depend
on the Reynolds number. We will use this value throughout the paper and compute the
corresponding Hinze scale, defined as (1.2).

Close to stable conditions, at We = 3, when a break-up is observed, we typically observe
the formation of a few child bubbles over the time of the simulation (20tc). When the
Weber number is increased to We = 6, we observe the formation of 4 to 8 child bubbles
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over 20tc. When the Weber number is further increased to We = 15, 30 and 45, we
observe more dramatic break-ups and a large number of child bubbles with run times
smaller than 10tc to obtain stationary results in terms of child size distribution. We will
now illustrate this phenomenology of bubble break-up. Note that the Ohnesorge number
Oh = μl/

√
ρlσd0 is always below 0.1, so that viscous effects should not play a dominant

role in the dynamics.

3.2. Phenomenological description: break-up at various Weber numbers

3.2.1. Binary and tertiary break-up for bubbles close to the Hinze scale
Figure 5 shows an example of a simple binary break-up occurring for a bubble initially
close to the Hinze scale (d0 ≈ dh, We ≈ Wec), with snapshots of the bubble interface in the
continuously forced turbulent flow, for a level of refinement Le = 10. The bubble spends
several eddy turnover times in the flow, with oscillations and deformation due to turbulence
until it finally breaks, producing two child bubbles of size approximately 0.6dh and 0.9dh.
No further break-up is observed as the two newly created bubbles continue to evolve in
the turbulence. We show the diameter trees for levels of refinement Le = 9 and Le = 10,
displaying the bubble diameter as a function of time. The single break-up occurs close to
3.5tc and very good agreement between the two resolutions is observed for the break-up
time, and the sizes of the child bubbles being produced. Note that, as discussed for the
decaying turbulence test, smaller fragments, with size < 8Δ, are also created and these
one do not appear grid converged. This confirms the accuracy of the numerical methods
and the independence of the results from the mesh size, for child bubbles larger than 8Δ

(per diameter). This type of binary break-up leading to two children of comparable size is
in qualitative agreement with various experimental descriptions near the stable conditions
(Risso & Fabre 1998).

Figure 6 shows another example of the dynamics for a bubble initially close to the Hinze
scale (d0 ≈ dh, We ≈ Wec), but for another precursor time. We observe a sequence of
two successive binary break-ups, the bubble deforms faster and breaks after less than 2tc
into two child bubbles of comparable size (≈ 0.6dh and ≈ 0.9dh), and the largest bubble
quickly breaks again into two more child bubbles, leading to three children in the stationary
state at long times. Similarly to the previous case, all bubbles at the end are below the
Hinze scale. This type of behaviour is consistent with some of the break-up processes
reported experimentally by Vejražka et al. (2018).

Comparisons between levels of resolutions Le = 9 and Le = 10 show that the two
break-up events are similar, with break-up times and child bubble sizes comparable, with
differences of up to 10 %. These differences can be attributed to variability in the turbulent
flow as time progresses, as well as small differences in the resolution of the details of
the break-up events. This highlights the need to discuss large ensembles of child bubbles
when comparing the resulting size distributions. Moreover, the variability in the scenarios
for the same nominal Weber number highlights the importance of the statistical approach.
Nevertheless, all simulations at We = 3 display a similar dynamics to the two examples
shown here, with binary and tertiary break-up and a large majority of bubbles produced in
the range of 0.5dh ≤ d ≤ dh.

3.2.2. Increasing the Weber number: sequence of break-ups
We increase the Weber number, and now consider We = 6, which corresponds to an initial
bubble of size d0 ≈ 1.5dh. We observe that, for all precursors, the initial bubble breaks
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(a) t/tc ≈ 2.2

(c)

(b) t/tc ≈ 4

101

10–2

10–1

100

1086

t/tc

d/dH

420

Figure 5. Bubble with initial size close to the Hinze scale, d ≈ dh, or We ≈ Wec; here, We = 3 (Reλ = 38) for
levels of refinement Le = 9 and Le = 10 Snapshots of the bubble during the simulation (a,b), with interface
in white and each background plane showing one component of the velocity for Le = 10, before the break-up
t/tc = 2.2 (weakly deformed), and after break-up t/tc = 4. We observe a single binary break-up. (c) Shows
the diameter of the bubbles d/dh as a function of time t/tc for levels of refinement Le = 9 (blue) and Le = 10
(orange). Dashed lines indicate the 8Δ resolution with the same colour code. Results for bubbles larger than
8Δ at level 9, are very similar for Le = 9 and Le = 10 showing grid convergence. Some bubbles below 8Δ are
also visible but appear under-resolved as their sizes depend on the grid.

within the 20tc time frame, with a relatively broad range of break-up patterns. Figure 7
shows a typical example of the resulting dynamics, with an earlier initial break-up around
one eddy turnover time (≈tc) leading to two child bubbles and with a successive break-up
event within one eddy turnover time (≈1.5tc) creating two bubbles. The largest of the
child bubbles will eventually break one more time, leading to a final number of four
child bubbles with resolution >8Δ. Again the diameter trees shows that the bubble size
and break-up times are very well resolved between Le = 9 and Le = 10. Note also that
smaller bubble fragments below the 8Δ resolution limit are also produced, with differences
between the two resolutions. Note that the later break-up properties between the two
resolutions show some differences due to accumulation of numerical errors but also the
chaotic nature of the flow, which means that the turbulence evolves slightly differently in
each realization. Differences in the bubble sizes and times of break-up between the two
resolutions remain typically below 20 %, as does the number of child bubbles formed after
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(a) (b) (c)

(d )

(g)

(e)

101
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0 108642

10–1

100

( f )

d/dH

t/tc
Figure 6. Bubble break-up with initial size close to the Hinze scale, d ≈ dh, or We ≈ Wec; here, We = 3
(Reλ = 38) for levels of refinement Le = 9 and Le = 10. Snapshots of the bubble during the simulation (a–f ),
with interface in white and each background plane showing one component of the velocity for Le = 10, before
the break-up (t/tc = 0.75, weakly deformed), close to break-up (t/tc = 1.25, strongly deformed) after a first
break-up (t/tc = 1.75), with the largest child bubble still largely deformed (t/tc = 2.4) and which also breaks
(t/tc = 3), and finally the three child bubbles evolving without further break-up in the turbulent flow (t/tc = 4).
The first binary break-up is followed by a second binary break-up leading to three child bubbles from 0.4 to
0.85d0. Panel (g) shows the diameter of the bubbles d/dh as a function of time t/tc for levels of refinement
Le = 9 (blue) and Le = 10 (orange). Dashed lines indicate the 8Δ resolution with the same colour code. Results
for bubbles larger than 8Δ at level 9, are very similar for Le = 9 and Le = 10 showing grid convergence. Some
bubbles below 8Δ are also visible but appear under-resolved as their sizes depend on the grid.

t/tc = 2. This confirms the need for relatively large ensembles at low Weber number, and
the fact that the limit of 8Δ appears a relatively conservative choice in order to only discuss
the bubbles whose formation is independent of grid size.

Interestingly, this case presents a sequence of break-ups for the largest bubble, showing
a staircase feature, a signature of the classic bubble break-up cascade, with now four
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(a)  t/tc = 1.17 (b) t/tc = 1.91 (c) t/tc = 2.83

(d) t/tc = 3.56

(g)

(e) t/tc = 4.56 ( f ) t/tc = 5.5

101

10–2

0 108642

10–1

100

t/tc

d/dH

Figure 7. Bubble with initial size slightly larger than the Hinze scale, d ≈ 1.5dh, or We ≈ 2Wec; here, We = 6
for Reλ = 38 and the level of refinement Le = 10. Snapshots of the bubble during the simulation (a–f ), with
interface in white and each background plane showing one component of the velocity. Panel (g) shows the
diameter of the bubbles d/dh as a function of time t/tc for levels of refinement Le = 9 (blue) and Le = 10
(orange). Dashed lines indicate the 8Δ resolution. We observe a sequence of three break-up events leading to
four child bubbles with diameter above 8Δ. Results for bubbles larger than 8Δ are very similar for Le = 9 and
Le = 10, showing grid convergence. Some bubbles below 8Δ are also visible but appear under-resolved as their
sizes depend on the grid.

generations of bubbles existing during the simulation. The range of bubble sizes appears
broader than for lower Weber number, the smallest resolved child bubble being close to
0.4dh. A large number of simulations for We = 6 has been completed, and the break-up
patterns are similar to the one shown in figure 7, with between four and six child bubbles
being formed, over three to four generations of bubble, with sizes ranging typically
between 0.1dh and dh.
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3.2.3. High Weber number: multiple cascading events and sub-Hinze scale production
With continuing increase of the Weber number, we observe a dramatic increase in the
number of bubbles being produced and the production of numerous small bubbles much
smaller than the Hinze scale. The break-up time of the first event is systematically reduced
when comparing the same precursors and the sequence of break-ups becomes more
complex.

Figure 8 shows an example of snapshots of the bubble dynamics at We = 15 (5Wec
corresponding to an initial bubble of 3dh). The bubble deforms quickly with high
deformation visible within the first eddy turnover time, and a first break-up occurs for
t < tc, creating two large second-generation child bubbles and a smaller satellite bubble.
The two large bubbles both experience a second break-up but with very different patterns
that can be linked to their production. The smallest one is weakly deformed when it is
formed and breaks approximately one tc later, producing again two bubbles of comparable
sizes. The largest of the first-generation bubbles is highly deformed when created, and is
further deformed by the turbulence creating elongated filaments that break fairly quickly
(t < 2tc) to produce a larger number of child bubbles with a broad distribution of sizes. The
largest of these third-generation child bubbles is again highly deformed and breaks within
one eddy turnover time. These cascading events lead to a wide range of bubble sizes, from
dh to 0.1dh (the resolution limit at level Le = 11). This process seems to stop once the
largest bubbles left are around the Hinze scale (these bubbles might break later but the
dynamics becomes fairly independent of the initial sequence of break-up). It is important
to observe that, contrary to the small We cases, here, the number of bubbles produced
close to the Hinze scale is much smaller than the number of bubbles much smaller than
the Hinze scale, i.e. most bubbles produced are between 0.1dh and 0.4dh. Note that these
bubbles are therefore one order of magnitude smaller in diameter than the initial bubble.
Figure 8 also shows a contour plot of the number of bubbles produced as a function of
time, with the colour scale in log scale, which quantifies the above description: numerous
bubbles smaller than 0.4dh are being produced through successive break-ups of bubbles
initially larger than the Hinze scale, with approximately 10 generations of bubbles within
5tc.

All We = 15 cases exhibit a similar dynamics, with a fast first break-up, which exhibits
a very large deformation and leads to the formation of a small number of large child
bubbles. We observe that some of these large children are already highly deformed at
the moment of formation, and are prone to a further succession of break-ups, without
first recovering a stable shape. This initially highly deformed shape facilitates the possible
formation of filaments that can break into small bubbles, down to the grid resolution.
This relatively high Weber number case illustrates the observation that bubbles are being
produced both through a break-up cascade local in scale (creation of bubbles of the same
order of magnitude as the parent) and non-local cascade with the creation of bubbles
much smaller than the parent. The number of generations of child bubble (or sequence
of break-ups) is typically approximately 10.

The dynamics is similar at even higher Weber number, as shown in figure 9 for We = 30.
We observe similar patterns with a dramatic increase in the number of bubbles created
and the number of events. The bubble deforms quickly, and breaks into four pieces at
t ≈ 0.9tc; the two larger child bubbles are highly deformed and break at approximately
1.5tc into multiple small bubbles and some intermediate ones. These successive break-up
events continue until most bubbles above the Hinze scale have broken, between 3tc and
4tc. A contour plot is also shown. The dynamics is complex, with a very large number
of successive events of break-up and up to 15 generations of bubbles. The times between
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(a) t/tc = 0.41 (b) t/tc = 0.67 (c) t/tc = 0.81

(d ) t/tc = 1.21 (e) t/tc = 1.41 ( f ) t/tc = 1.69

(g) t/tc = 2.09 (h) t/tc = 2.65

0
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2 4

(i) t/tc = 3.03
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Figure 8. Bubble with initial size larger than the Hinze scale, d ≈ 3dh, or We ≈ 5Wec, here We = 15. (Reλ =
38). Snapshots of the bubble during the simulation, with interface in white and each background plane showing
one component of the velocity for Le = 11, at times 0.41tc, 0.67tc, 0.81tc, 1.21tc, 1.41tc, 1.69tc, 2.09tc, 2.65tc
and 3.03tc. The bubble quickly deforms and breaks into multiple bubbles of various sizes, the larger ones
being still highly deformed and breaking again into small bubbles. Panel( j) shows a contour plot of the number
of bubbles N(d, t), as a function of the bubble diameter d/dh and time t/tc for Le = 11. A contour plot is
used as numerous bubbles are produced and simple trees become difficult to read. Colour is log scaled. We
observe numerous break-up events leading to a large number of child bubbles, with a very broad distribution
and numerous bubbles between 0.1 and 0.4dh. The 8Δ resolution is indicated in dotted lines and 4Δ in dashed
lines for Le = 11.
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events are much decreased at this higher Weber number, with separate break-up events
becoming less distinct. As discussed above, child bubbles can be highly deformed when
produced and it is common that, after a break-up forming child bubbles, they in turn
break almost immediately. The number of child bubbles produced close to the Hinze
scale becomes dominant, with a large number of bubbles between the grid resolution and
0.4dh, while the initial bubble was approximately 4dh. This illustrates clearly a non-local
production mechanism, with large bubbles producing in a very short time bubbles less
than 10 times smaller. All We = 30 cases exhibit a similar dynamics. Finally, simulations
at We = 45 present similar features, with rapid successive break-ups following initially
large deformation.

4. Bubble break-up mechanisms

4.1. Defining a characteristic time scale for the bubble dynamics
As seen in the previous section, the breakage of bubbles at high Weber number occurs
in two steps: first a rapid succession of successive events followed by a slower evolution
driven by independent break-up events. As the transition time between the fast and the
slow evolution depends on the Weber number, we aim to characterize the relevant time
scale. We consider the mean initial bubble lifetime T , computed for each Weber number,
using the ensemble average.

Figure 10 shows the dimensionless inverse of the mean lifetime tc/T , which corresponds
to the breakage frequency often measured experimentally (Martinez-Bazan et al. 1999a;
Vejražka et al. 2018). At small Weber number, the initial bubble lifetime strongly depends
on the Weber number, while it becomes almost independent of We when We ≥ 30. Indeed,
T/tc converges to 0.67 at high Weber number but diverges near the critical Weber number
Wec = 3. We compare the break-up frequency g = 1/T to a phenomenological model from
Martinez-Bazan et al. (1999a), which considers that the probability of break-up increases
with the ratio between the gradient of pressure of the turbulent flow and the restoring force,
namely the Weber number, and should be zero for We < Wec. They obtain the following
break-up frequency

gtc = α̃

√
We
Wec

− 1. (4.1)

Our numerical data are in qualitative agreement with the model, with the measured critical
Weber number, Wec = 3 and α̃ = 1.5 fitted to the data.

4.2. Description and quantification of the two breaking regimes
We now quantify the temporal evolution of the breaking dynamics. Figure 11 shows
the average number of bubbles N̄ as a function of time for each ensemble, time being
normalized by the mean bubble lifetime described in figure 10. Since all the simulations
are performed with the same grid size for all Weber numbers, the resolution of sub-Hinze
scale bubbles depends on the Weber number (see table 1). To compare the results between
the runs at different We numbers, we set a lower bound at a fraction 0.5d/dh, which is well
resolved for all We at level 10. This bound excludes data such that 8Δx/dh ≤ 0.5d/dh,
that is to say, the ensemble at We = 45 and level 9. The filled circles correspond to level
Le = 9 ensemble while the open diamonds represent data at Le = 10. For We = 6, 15 and
30, the level 9 and 10 curves are very close to each other, showing that the dynamics is
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(a) t/tc = 0.44 (b) t/tc = 0.89 (c) t/tc = 1.06

(d ) t/tc = 1.35 (e) t/tc = 1.53 ( f ) t/tc = 1.64

(g) t/tc = 1.76 (h) t/tc = 2.25 (i) t/tc = 2.80
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Figure 9. Bubble with initial size much larger than the Hinze scale, d � dh, or We � Wec; here, We = 30.
(Reλ = 38). Snapshots of the bubble during the simulation, with the interface in white and each background
plane showing one component of the velocity for Le = 11. Panel ( j) shows a contour plot of the number of
bubbles N(d, t), as a function of the bubble diameter d/dh and time t/tc for Le = 11. Colour is log scaled. The
8Δ resolution is indicated in dotted lines and 4Δ in dashed lines for Le = 11.
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3.0
level = 9

level = 102.5

2.0

1.5

1.0

0.5

0 504030

We
2010

tc /T

Figure 10. Ensemble-averaged break-up frequency tc/T of the initial bubble made dimensionless using the
eddy turnover time at the scale of the initial bubble. Data sets at level Le = 9 and 10 are shown and are
very close. The break-up frequency converges to tc/T = 1.5 at high Weber number. The break-up frequency
diverges near We = Wec. The model from Martinez-Bazan et al. (1999a), (4.1), is shown by the black dotted
line, gtc = α̃

√
We/Wec − 1, with Wec = 3 and α̃ = 1.5 a non-dimensional coefficient fitted to the data.

103
d > 0.5dh d > 0.5dh
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Figure 11. Mean number of bubbles N̄ and diameter d̄ as a function of time, normalized by the mean lifetime
of the first break-up for each We number. Filled circles correspond to ensembles at level Le = 9, while open
diamonds are for Le = 10. Note that, here, only bubbles such that d/dh > 0.5 are taken into account. Grid
convergence is achieved between levels 9 and 10 at Weber numbers 6, 15 and 30 for which we have ensembles
at both levels. A transition between a rapid production of bubbles and a slower regime happens when d̄ ≈ dh,
i.e. all the highly unstable bubbles have already broken, leaving only the smaller stable bubbles which have a
longer lifetime.

well resolved and independent of the grid size regarding the formation of bubbles larger
than 0.5dh.

For small We, we observe a weak increase of the mean number of child bubbles,
eventually reaching 2 after 6T . For large We, we first observe a rapid increase of the
number of child bubbles produced before a transition at t ≈ 3T to a saturation. The system
has reached a quasi-equilibrium with a plateau value of bubbles that depends on We. The
saturation time is better understood by looking at the mean diameter d̄ as a function of
time (figure 11). The transition between the two regimes of bubble production coincides
with the moment at which the mean bubble diameter reaches the Hinze length scale dh. It
corresponds to the time at which most of the large unstable bubbles have broken and only
bubbles smaller than dh or with a diameter close to the critical size are still present. The
breakage of bubbles close to the Hinze scale, whose lifetime is much larger (see figure 10),
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We Le # runs % break-up d0/dh 8Δ/dh max(t/tc) Reλ d0/λ Oh

1.5 9 10 0 0.5 0.06 20 38 1.49 0.019
3 9 60 45 1 0.12 20 38 1.49 0.027
3 10 3 N/A 1 0.06 20 38 1.49 0.027
6 9 35 100 1.5 0.18 20 38 1.49 0.038
6 10 15 100 1.5 0.09 20 38 1.49 0.038
15 9 10 100 2.9 0.34 10 38 1.49 0.064
15 10 10 100 2.9 0.18 7 38 1.49 0.064
15 11 1 100 2.9 0.09 5 38 1.49 0.064
30 9 10 100 4.1 0.48 10 38 1.49 0.085
30 10 10 100 4.1 0.24 7 38 1.49 0.085
30 11 1 100 4.1 0.12 5 38 1.49 0.085
45 9 10 100 5.2 0.61 10 38 1.49 0.104
45 10 1 100 5.2 0.30 7 38 1.49 0.104
45 11 1 100 5.2 0.15 5 38 1.49 0.104

Table 1. List of simulations and ensemble of simulations for various Weber numbers, indicating the level of
resolution on the interface, the number of runs, the initial bubble over Hinze scale ratio, the resolution for
8 grid points per bubble diameter over Hinze scale ratio and the typical length of the simulation in terms
of t/tc; We = 3 is identified as the critical Weber number as approximately 50 % of the simulations produce
break-up after running for 20tc, defining dh. The level 10 cases at We = 3 were chosen to have break-up for
grid convergence verification purposes only. All simulations have been done using the Reλ = 38 precursor.
The Ohnesorge number is indicated, Oh = μl/

√
ρlσd0, and is always below 0.104.

explains the slower increase in the later time regime. Note that the transition time and the
plateau value depend on the lower bound for the diameter range we consider. For Weber
number close to the critical value Wec, the bubble break-up dynamics is driven only by
slow independent events.

Next, we consider the average number of bubbles N̄ produced at quasi-equilibrium
(at t = 7T) as a function of the initial Weber number in figure 12. The mean number
of bubble produced increases from 2 at low Weber number to almost 100 at the highest
Weber number, only here considering the bubbles larger than 0.5dH . Note again that the
numerical results are independent of grid size. The numerical results are compared to the
experimental data from Vejražka et al. (2018) and display a very good agreement between
the average number of bubbles produced in the simulation and the experimental data (we
use the total count of experimental bubbles). The numerical and experimental data can be
described by a scaling, N̄ ∝ We1.35.

4.3. Time evolution of the bubble production

4.3.1. Sub-Hinze bubbles production in time
For large We, we have identified two successive regimes in the bubble production process.
At early times, sequences of events starting with the break-up of the large super-Hinze
bubble leads to multiple break-up events and a broad range of child bubble sizes, while
at later time, less frequent independent break-ups of bubbles close to the critical scale
dominate the production. The temporal evolution of the bubble number also shows that,
for high We, many more child bubbles are produced, going from 3 bubbles in the range
d > 0.5dH at We = 6 to more than 90 for We = 45 (figures 11 and 12).

To further quantify the partition between sub-Hinze scale bubble production resulting
from large bubble break-ups, we introduce a metric that separates the distribution into two
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d0 ε [1.82, 2.23] mm
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d0 ε [3.34, 4.10] mm
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We
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t = 7T, d > 0.5dh

Figure 12. Average number of child bubbles larger than dh/2 during the quasi-equilibrium stage, taken at 7T ,
as a function of the initial Weber number in the simulation together with experimental data from Vejražka
et al. (2018). Here, d0 is the size of the initial bubbles in the experiment. Simulation data are in black while
experimental data are coloured. The black circles correspond to level 9 simulations while open diamonds
correspond to data at level 10. The simulation data are in very good agreement with the experimental data, and
follow N̄ ∝ We1.35 (solid black line).

ranges of scales: the sub-Hinze scale bubbles (smaller than 0.5dh) and the super-Hinze
scale bubbles (larger than 0.5dh). The choice of the upper range limit d = 0.5dh is
based on two physical arguments. First, according to the binary break-up model from
Martinez-Bazan et al. (2010), bubble break-up close to the stable condition (d ≈ dh)
mostly produces child bubbles in the range between 0.5 and 0.9dh. By taking dmax =
0.5dh, we ensure that the counted bubbles do not originate from break-up near the Hinze
scale. Second, the Hinze scale is defined only in a statistical sense, based on average
values of the dissipation rate ε, which is known to exhibit a quite large probability density
function. The definition of the Hinze scale is therefore not a hard boundary between
breaking and non-breaking bubbles. Henceforth, bubbles with sizes close to dh can still
break, feeding the local break-up cascade. Bubbles smaller than 0.5dh almost never break,
and hence are only the final products of a breaking events cascade.

We write the interval I = [dmin, dmax] of bubble diameters, and require dmin > 8Δ and
dmax < d0 and compute the proportion of bubbles larger than dmin that lies within the
interval I, (N</N̄)(I, t). In order to compare data sets obtained for different Weber number
values, we use I = [0.242dh, 0.5dh]. The lower bound is determined to compare all data
sets up to We = 30 and fulfil the dmin > 8Δ criterion.

Figure 13(a) shows the total number of bubbles N̄(t) produced as a function of time
t/T when considering all bubbles larger than 0.242dh. As already discussed, we observe a
sharp increase of N̄ with the Weber number. For Weber numbers close to stable conditions
(We = 3 ≈ Wec) an average number of bubbles between 2 and 3 is observed. For We = 6,
the number of bubbles being produced increases from 2 to 8 from 5T to 8T . For We = 15,
around 10 bubbles are formed during the rapid increase stage (t < 4T) and the final count
is around 30 bubbles (at t = 8T). Finally, at We = 30, around 80 bubbles are produced
during the first phase (t < 4T), and the slower increase leads to approximately 100 bubbles
at later times.

Figure 13(b) shows that the partition between small sub-Hinze bubbles (d < 0.5dh) and
large bubbles (d > 0.5dh) is also strongly dependent on the Weber number. Figure 13(b)
shows N</N̄, the proportion of small bubbles between 0.242dh and 0.5dh. For Weber
numbers close to stable conditions (We = 3), almost all bubbles produced are larger
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Figure 13. (a) Mean number of child bubbles larger than 0.242dh, as a function of time t/T for increasing
We number. (b) Proportion of child bubbles of size d < 0.5dh, namely sub-Hinze bubbles, among all bubbles
larger than 0.242dh. When We ≈ Wec, child bubbles larger than 0.5dh dominate, while sub-Hinze bubbles are
predominant for large Weber numbers, We = 15, 30. Filled circles correspond to ensembles at level Le = 9,
while open diamonds are at Le = 10. Grid convergence is achieved between levels 9 and 10.

than 0.5dh, in agreement with the classic binary break-up scenario. For increasing
Weber number, We = 6, approximately 20 % of sub-Hinze scale bubbles are produced.
Eventually, for higher Weber numbers, We = 15, 30 (We � Wec), we observe two steps
in the break-up process, in a similar manner to the temporal evolution of the bubble
number. During the first typical lifetime t < T , the proportion of sub-Hinze bubbles
rapidly increases but stays inferior to 50 %. This first rapid evolution is symptomatic
of break-up cascade of the largest super-Hinze bubbles which produce child bubbles
populating the distribution both locally (d/d0 ≈ 0.72, where d is the daughter size and d0
the mother size) and non-locally (d/d0 
 1) in scale. After approximately 2T , the small
sub-Hinze bubbles become predominant. At later times, most of the large bubbles have
broken and a partition with a clear majority of sub-Hinze bubbles (>60 %) compared to
the larger bubbles is reached for We = 30 (green).

4.3.2. Child size distribution N (d, t)
We have discussed the phenomenology of bubble break-up for increasing values of the
Weber number, and demonstrated at low Weber number that the production of child
bubble is grid independent for bubble diameters larger than 8Δ. The convergence of the
bubble distribution with respect to the grid resolution can also be examined for higher
Weber numbers. In the early stage of the break-up sequence, grid convergence on the first
event has been observed by comparing diameter trees, as in the previous section. At later
times, a statistical comparison becomes necessary. We compute the ensemble-averaged
size distribution at all Weber numbers at different times during the break-up processes, for
each resolution and compare the observed statistics.

As shown by the evolution of bubble size, the shape of the child size distribution depends
on time. We aim to characterize the size distribution during the rapid break-up sequence at
early times and the quasi-equilibrium one at late time. Therefore, we compute the bubble
size distribution at various times and focus on the child bubble size distribution at the very
end of the first breaking sequence at t = 4T and one latter during the quasi-equilibrium
stage t = 7T . From the analysis of the number of child bubbles presented earlier, and
the number of runs performed, this will correspond to the size distribution using from
∼100 bubbles (We = 3), up to ∼1000 at higher Weber number. As such, we expect the
statistics to be poorly resolved at low Weber number but more convincing at higher Weber
number. Note that we consider t = 4T as it is right at the end of the rapid break-up regime,
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Figure 14. Size distribution of the child bubbles at two different times corresponding to the end of the
rapid sequence of break-up at early times (t = 4T) and at later times, once the quasi-equilibrium stage has
been reached (7T). Diameters are divided by the Hinze scale. Circles correspond to level 9 ensembles and
open diamonds to level 10 ensembles. The minimum diameter of each ensemble corresponds to 8Δ/dh. The
black dashed line indicates the sub-Hinze scale scaling N (d/dh) ∝ (d/dh)

−3/2 while the black dotted line is
proportional to N (d/dh) ∝ (d/dh)

−10/3. The points are the histograms of the sizes for each ensemble. For
low Weber numbers (We = 3, 6) most of the bubbles produced are between 0.5dh and dh. For high Weber
numbers (We = 15, 30, 45), the super-Hinze scale regime is in agreement with the break-up cascade scaling
N (d/dh) ∝ (d/dh)

−10/3, while the sub-Hinze scale distribution follows N (d/dh) ∝ (d/dh)
−3/2 for We = 15

at both times, and at early times for We = 30, while it becomes steeper at later times for We = 30.

and presents relatively converged statistics, as more bubbles have been produced. The
distribution at t = 3T is very similar but contains fewer bubbles, especially at We = 15,
while typically less than 10 bubbles have been produced at t = 2T .

Figure 14 shows the size distribution N (d/dh, t) for each We at t = 4T and one later
during the quasi-equilibrium stage at t = 7T . The value of N (d/dh, t) is normalized such
that the sum over all the bins gives the average number of bubbles per simulation, that is
to say

∫
d/dh

N (d/dh, t, We)dd = N̄(t), i.e. N (d/dh) is the average number of bubbles per
bin size. The data represent the histograms of bubble sizes for every ensemble for level 9
for We = 3 and We = 6 and level 10 for the larger Weber numbers.

At We = 3 (purple), close to stable conditions, bubbles are distributed between 0.5dh
and dh, which also corresponds here to the initial bubble size. A few sub-Hinze bubbles
are also produced. As time passes, the bubble distribution does not evolve significantly.
The only difference comes from bubbles very close to the injection size. Indeed, since
the lifetime distribution is very broad at this Weber number, some bubbles have not yet
broken after t = 4T . At latter times they have almost all broken and the resulting child
bubbles broaden the distribution slightly. The time invariance of the distribution is an
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additional indicator that a single breaking process is at stake here. The distribution shape
is compatible with semi-empirical models for the size distribution of child bubbles formed
due to break-up in turbulence, and is interpreted as the result of binary break-ups producing
bubbles of similar sizes, as discussed by Martinez-Bazan et al. (1999a). Note that our
limited statistics makes a detailed comparison with the model complicated.

At We = 6, for which the initial size is d0 = 1.5dh (dark blue), the distribution is
similar to the We = 3 case but with more bubbles: the distribution still presents a bump
around d = dh which has, however, broadened, and bubbles of significantly smaller size
now arise. The sub-Hinze bubbles distribution exhibits a scaling that is compatible with
d−3/2, especially at later time t = 7T . This can be interpreted by the occurrence of
break-up events forming one small and one large bubble, such scenarios having been
described experimentally and semi-empirical models having been discussed (Vejražka
et al. 2018). The primary peak around 0.8dh could possibly be interpreted by a convolution
of successive break-ups following models described in Martinez-Bazan et al. (2010).
However, the overall statistics of our ensemble at low Weber number remains limited to
quantitatively distinguishing an adequate formulation.

The picture changes drastically for higher Weber number. At We = 15, represented in
light blue, and at t = 4T , the bump near the injection size has disappeared. The distribution
close to d0, above the Hinze scale, is steeper and is now compatible with a power law ∝
d−10/3 (recall the initial bubble size d0 ≈ 3dh) while the sub-Hinze bubble distribution is
much flatter and follows N (d) ∝ d−3/2. At later time, the quasi-equilibrium stage displays
a clear N ∝ d−3/2 regime for the sub-Hinze scale range, while very few super-Hinze scale
bubbles remain.

At the two highest Weber numbers We = 30 and We = 45, corresponding to d0 ≈
4dh and d0 ≈ 5dh, respectively, we observe a very clear N ∝ d−10/3 scaling for the
super-Hinze bubbles, both at early and later times. This further confirms previous work on
bubble break-up in turbulence for large bubbles and the existence of a quasi-equilibrium
range resulting from a break-up cascade process.

At t = 4T the sub-Hinze scale distribution presents a scaling slightly steeper than
the d−3/2 scaling, which becomes even steeper at later time (t = 7T). The sub-Hinze
distribution seems to get steeper for higher Weber number, but size resolution is also more
limited at the highest We.

Note also that, for each time and for each Weber number, we observe good agreement in
the statistics of bubbles with sizes ≥ 8Δ, when comparing the ensemble-averaged size
distribution for increasing grid resolution, which confirms the discussion made when
observing individual events at low Weber number.

4.4. Binary break-up analysis of the first break-up
Numerous models have been developed to describe the child size distribution of a binary
break-up. As described in Qi et al. (2020) they lie into three categories: bell shaped
(Martinez-Bazan et al. 1999a; Han, Luo & Liu 2011), U-shaped (Tsouris & Tavlarides
1994; Luo & Svendsen 1996) or M-shaped (see Nambiar et al. (1992) or Wang, Wang &
Jin (2003) for some parameters). In bell-shaped models it is much more probable that a
bubble breaks into two equal child bubbles. On the contrary, very unequal break-up, that
creates a small and a large bubble, has a high probability in U-shaped models. Finally, the
M-shaped models postulate that there is an unequal break-up that is the most likely, while
equal break-up is a local minimum of the probability density function. The three categories
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Figure 15. Child bubble size distribution of the first break-up event. Volumes are divided by the volume of
the initial parent bubble. The solid line is the probability density function estimated using a Gaussian kernel
density estimate for both parts of the graph (below 1/2 and above 1/2) separately. The bandwidth is estimated
using Scott’s rule. For We = Wec the majority of the break-ups lead to bubbles with sizes similar to the initial
bubble (V/V0 = 0.4 and 0.6 respectively). For increasing Weber number, the distribution becomes compatible
with U-shaped models proposed in the literature. Break-ups producing significantly different sizes dominate.
The larger is the Weber number the more likely are the uneven break-ups and the flatter is the probability
between 0.1 and 0.9.

of models are somewhat contradictory as they rely on different break-up dynamics. As a
consequence, their domains of validity remain to be discussed and may depend on the
Weber number of the initial bubble.

Previous sections have shown that the succession of breaking events is highly dependent
on the Weber number. Much more sub-Hinze bubbles are produced when We � Wec. We
have argued that there is a history effect in the breaking process: at high Weber number
we observe a cascade of events which lead to bubbles much smaller than the initial bubble
size. In reality, the different dynamics is already visible when looking at the first break-up
event for which there is no history effect.

Figure 15 shows the child volume distribution function, for the first break-up, for each
ensemble, with the child volume normalized by the volume of the initial (parent) bubble.
The symbols are the histogram data while the solid lines give the Gaussian kernel density
estimation (KDE) of the probability density function. In Gaussian KDE, a Gaussian kernel
of a given standard deviation (the bandwidth) is applied to each of the diameters. The
kernels are summed to give the estimate. The bandwidth is selected using Scott’s rule.
A complete description of this method and rules for bandwidth selection can be found in
Scott (2015). We use data at level 9 for We = 3 and We = 6 and level 10 for the larger
Weber numbers to compute the Gaussian KDE. The solid lines represent the estimation of
the probability density function by a Gaussian KDE on [0, 1/2] and [1/2, 1] respectively.
These lines modelled on the histogram data are mainly used to guide the eye given the
small size of the samples.

Note that the volume is conserved during break-up and since V0 = Vmin + Vmax with
Vmin and Vmax being the volume of the smaller and the larger daughter bubble, respectively,
we expect the distribution to be symmetric with respect to 0.5V0 when considering binary
break-ups. This constraint and its implications is discussed for various binary break-up
models in Martinez-Bazan et al. (2010).

The shape of the distribution strongly evolves with the Weber number. For We = Wec
the probability distribution function (PDF) exhibits an M-shape with two local maxima at
V/V0 = 0.4 and V/V0 = 0.6. The two child bubbles have sizes comparable to the initial
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bubble. This type of break-up leads to a production of bubbles local in scale. Note also
that the probability density function goes to zero for V/V0 → 0 and V/V0 → 1, showing
that unequal break-ups are highly unlikely at We = 3. Different mechanisms have been
proposed to explain breakage that leads to bubbles with sizes close to the mother one. The
first one is based on a resonance mechanism. Eddies much smaller than d0 collide with
the initial bubble which begins to oscillate until it breaks, while another possibility comes
from eddies at the size of the initial bubble that could excite and break the bubble in one
eddy turnover time (Risso & Fabre 1998; Martinez-Bazan et al. 1999a).

For increasing Weber number the probability density function changes drastically
and exhibits a U-shape. Break-ups that produce significantly different sizes become
predominant. This type of break-up leads to a production of bubbles both non-local and
local in scale as one of the two child bubbles is such that d/d0 
 1. They could be
associated with small eddies, smaller than the mother size, that eventually tear of a small
piece of the mother bubble, as well as capillary effects in the tearing process. Finally, at
high Weber number, the child size PDF is eventually flat for normalized volume between
0.1 and 0.9.

4.5. Discussion and link to the distribution of bubbles under a breaking wave
In this section, we discuss how the break-up mechanisms described above for various
Weber numbers could be used to understand the broad distribution of bubbles observed
under a breaking wave, resulting from air entrainment and cavity collapse.

The distributions of relatively large bubbles, typically above 0.8dh presented in figure 14,
could probably be described by a population model considering the correct number of
successive break-up events and producing binary break-up following the Martinez-Bazan
et al. (2010) model framework.

We remark that such a scenario, with the accumulation of successive binary break-ups,
with break-up times of order tc, producing child bubbles of comparable size would lead to
a steep N(d) ∝ d−10/3 regime for bubbles above the Hinze scale, as discussed by Garrett
et al. (2000) and then Deane & Stokes (2002) and Deike et al. (2016). This corresponds to
a local turbulent bubble break-up cascade.

The production of bubbles below the Hinze scale lacks a general framework, and our
data strongly suggest that the development of a population model considering events of
break-up producing multiple bubbles is necessary and could be inspired by fragmentation
models, as recently reviewed by Villermaux (2020). Note that a decomposition of all events
into successive binary break-ups producing one very small and one large bubble, such as
the one from Tsouris & Tavlarides (1994) and reviewed by Martinez-Bazan et al. (2010),
could also be successful in reproducing our data. Such population models would then
require an accurate formulation for the successive break-up time distribution that depends
on Weber number, as described for droplet break-up in a turbulent jet by Aiyer et al. (2019).
This approach basically decomposes a sequence of break-ups into only binary processes
and makes the choice of parameters for break-up time and bounds on bubble sizes critical
for successful comparison with experimental and direct numerical data, in particular if one
hopes to reproduce the time evolution of the size distribution.

Finally, our results can be used to discuss the distribution observed under a breaking
wave. As discussed by Deane & Stokes (2002) and Deike et al. (2016), the distribution
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Figure 16. Sketch of the local and non-local break-up processes described for the break-up of large bubbles
(d � dh) and intermediate bubbles (d ≥ dh). The Taylor length scale λ is indicated, with bubbles breaking up
within the turbulent inertial range.

above the Hinze scale is observed to follow d−10/3 and can be interpreted as a turbulent
break-up cascade with local production of bubbles, while below the Hinze scale, a much
shallower distribution is observed, with large variation between various observations. We
attribute the sub-Hinze scale distribution to the break-up of large super-Hinze bubbles,
highly deformed and able to produce bubbles more than an order of magnitude smaller
than their size, leading to a non-local break-up cascade. These two mechanisms are
sketched in figure 16. The variations in the sub-Hinze scale bubble distribution observed
for various high Weber numbers can be in part used to explain the variability observed
in the experimental data sets. Moreover, we see a fair amount of time variability in the
development of the distribution, which could also explain such observed differences.

Note that there are limited experimental data on the production of sub-Hinze scale
bubbles during turbulent break-up related to the difficulty of performing such experiments,
and which would be valuable in further validating our results.

This idea of local and non-local processes to produce bubbles either close to the parent
size, or much smaller is explored independently in Chan et al. (2019, 2021), who describe
the development of the bubble size distribution under breaking waves by use of DNS and
sub-grid scale models. Note that the idea of locality and non-locality has to be understood
in terms of the scale separation between parent and child bubble sizes’, in analogy with
turbulent processes, but the actual break-up dynamics is always happening locally in the
physical space, as the bubble deforms and forms multiple pieces.

We note that the small bubble child size is comparable to the ligament diameter at
break-up, so that the terminology of local and non-local production only applies when
thinking in terms of equivalent volume diameter, relevant for population models. In
practice, the break-up process and cascade results from the complex morphology at
break-up which directly controls the associated bubble sizes. Other approaches exist to take
into account the complex geometry of the interface in two-phase turbulence. Canu et al.
(2018) rely on geometrical properties based on the mean curvature H and the Gaussian
curvature G when studying the atomization of a jet. This metric is more general than
a diameter based study since, in their case, there is no typical diameter before the first
breaking of the jet; and allows to recover the droplet size distribution from the joint
distribution of H and G (Essadki et al. 2018).
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5. Conclusion and discussion

We have presented direct numerical simulations of bubble break-up for a wide range
of Weber numbers using a VOF algorithm, facilitated by an adaptive mesh refinement
scheme, within the Basilisk platform. The bubble is inserted in a homogenous and
isotropic turbulent flow, and a large ensemble of simulations is performed using various
precursor times to obtain multiple realizations of bubble break-up in a turbulent flow
with the same statistical properties. We observe a critical Weber number Wec below
which bubbles do not break, while above the critical value, bubbles consistently break.
We demonstrate the robustness of the results for all Weber numbers and argue that our
results for bubble size production are independent of grid size when considering bubbles
produced with a resolution above 8 grid points per diameter. This is shown by analysis of
individual events at Weber numbers close to stable conditions, statistical analysis at high
Weber number and making use of adaptive mesh refinement with up to a total number of
points equivalent to 20483 (11 levels of refinement).

We observe that the number of child bubbles produced after a few eddy turnover times
at the scale of the initial bubble increases sharply with initial Weber number. Close
to stable conditions We ≈ Wec, two to three child bubbles are produced, increasing to
more than a hundred child bubbles for We � Wec. The production pattern also drastically
changes from a production through a local cascade process to a non-local cascade able
to produce a large number of sub-Hinze scale bubbles. Close to stable conditions, almost
all child bubbles have comparable sizes to the parent and are thus close to the Hinze
scale, while for We � Wec, a large number of sub-Hinze scale bubbles, more than an
order of magnitude smaller than the parents, are produced, as shown in figures 14, 15
and sketched in figure 16. The sub-Hinze scale bubble size distribution generated at high
Weber number can be described by N(d) ∝ dα with α varying between −1 and −2 for the
range of We considered, depending on the time of observation and the value of the scale
separation, d0/dh, between the initial bubble and the Hinze scale, which is comparable to
measurements under breaking waves for the same range of scales.

These two types of production mechanism can be linked to dynamical features in
the break-up process: at small Weber number, the bubble is deformed by turbulence
and breaks into two or three bubbles of comparable size. The child bubbles produced
in this way recover a spherical shape very quickly. At high Weber number, very large
deformations of the initial parent are observed leading in a first step to a limited number
of children of comparable size, with some of them still highly deformed. Such highly
deformed second-generation bubbles do not recover a spherical shape and will break
quickly, therefore leading to numerous tiny bubbles. This succession of fast break-ups from
highly deformable interface presents similarities with fragmentation patterns described
by Villermaux (2020). Such a non-local production process is not considered in classic
population models. We discuss the application of these local and non-local processes to
the case of deep water breaking waves, which generate a broad distribution of bubbles,
with a sharp change of regime between sub- and super-Hinze sizes. Population models
for the production of bubbles starting from the initial fragmentation of the large cavity
entrained under a breaking wave and following the successive break-up patterns could be
developed.
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